Introduction to OENotebook

Introduction to OENotebook

OENotebook is a small python package that provides some tools to make using OE Toolkits easier in IPython and the Jupyter Notebook .

In [1]:
import oenotebook as oenb
from openeye import oechem

# do we have a license?
print(oechem.OEChemIsLicensed())
True

OENotebook can tell you where to find more detailed documentation, either from the local install or online.

In [2]:
oenb.doc_link()

OENotbook Documentation

If you don't have web access you can open the local copy of the documentation by pasting the following URL into the address bar of your browser.

file:///Volumes/Source/oenotebook/oenotebook/docs/index.html

Error Capturing

One basic feature that OENotebook provides is displaying OE Errors within the notebook.

In [3]:
mol = oechem.OEMol()
smi = "!! I am not a valid SMILES string!!"

# Watch out!
oechem.OESmilesToMol(mol, smi)

print(mol.NumAtoms())    
Warning: Problem parsing SMILES:
Warning: !! I am not a valid SMILES string!!
Warning: ^

0
In [4]:
mol = oechem.OEMol()
smi = "C1CCCN[C@@H]1(O)"

# Parse our smiles into a molecule
oechem.OESmilesToMol(mol, smi)

print(mol.NumAtoms())
mol
8
Out[4]:

OEMol: C1CCN[C@@H](C1)O

Note the intelligent rendering of the OEMol object with the SMILES string above. This automated representation can be adjusted or disabled.

In [5]:
oenb.disable_markdown_mols()
In [6]:
mol
Out[6]:
<'oechem.OEMol'  C1CCN[C@@H](C1)O >
In [7]:
oenb.disable_text_mols()
mol
Out[7]:
<oechem.OEMol; proxy of <Swig Object of type 'OEMolWrapper *' at 0x10e553f60> >
In [8]:
oenb.enable_markdown_mols()
mol
Out[8]:

OEMol: C1CCN[C@@H](C1)O

Reading Molecule files into DataFrames

OENotebook leverages the pandas library to read molecules to DataFrames and write DataFrames back to molecule files. This provides a handy data structure for working with groups of molecules and attached data. Any SD data is automatically populated into the data frame, and is saved when written.

In [9]:
ml = oenb.read_file_to_dataframe("er_actives.ism")
ml.head()
Out[9]:
Molecule
0 <oechem.OEMol; proxy of <Swig Object of type '...
1 <oechem.OEMol; proxy of <Swig Object of type '...
2 <oechem.OEMol; proxy of <Swig Object of type '...
3 <oechem.OEMol; proxy of <Swig Object of type '...
4 <oechem.OEMol; proxy of <Swig Object of type '...

Use OETK Functions to add a new Column

In [10]:
ml['MW'] = ml.Molecule.apply(oechem.OECalculateMolecularWeight)
ml['NumAtoms'] = ml.Molecule.apply(lambda x: x.NumAtoms())
ml.head()
Out[10]:
Molecule MW NumAtoms
0 <oechem.OEMol; proxy of <Swig Object of type '... 388.52190 29
1 <oechem.OEMol; proxy of <Swig Object of type '... 406.96756 29
2 <oechem.OEMol; proxy of <Swig Object of type '... 372.52250 28
3 <oechem.OEMol; proxy of <Swig Object of type '... 406.96756 29
4 <oechem.OEMol; proxy of <Swig Object of type '... 454.57998 34

Summary Statistsics

In [11]:
ml.describe()
Out[11]:
MW NumAtoms
count 40.000000 40.000000
mean 425.924159 31.725000
std 41.479300 3.029661
min 347.473280 26.000000
25% 395.022490 29.000000
50% 424.060850 31.500000
75% 459.603935 34.000000
max 508.650500 37.000000

Sort on a Column

In [12]:
ml.sort_values(by="MW").head()
Out[12]:
Molecule MW NumAtoms
33 <oechem.OEMol; proxy of <Swig Object of type '... 347.47328 26
31 <oechem.OEMol; proxy of <Swig Object of type '... 347.47328 26
28 <oechem.OEMol; proxy of <Swig Object of type '... 361.49986 27
2 <oechem.OEMol; proxy of <Swig Object of type '... 372.52250 28
30 <oechem.OEMol; proxy of <Swig Object of type '... 381.48950 29
In [13]:
# Reversed sorting
ml.sort_values(by="MW",ascending=False).head()
Out[13]:
Molecule MW NumAtoms
5 <oechem.OEMol; proxy of <Swig Object of type '... 508.65050 37
17 <oechem.OEMol; proxy of <Swig Object of type '... 502.64438 36
10 <oechem.OEMol; proxy of <Swig Object of type '... 474.59122 34
16 <oechem.OEMol; proxy of <Swig Object of type '... 474.59122 34
21 <oechem.OEMol; proxy of <Swig Object of type '... 474.59122 35

Conditional Filtering based on Column Value

In [14]:
ml[ml.MW < 400].describe()
Out[14]:
MW NumAtoms
count 15.000000 15.000000
mean 382.910143 28.733333
std 17.469586 1.387015
min 347.473280 26.000000
25% 377.006000 28.500000
50% 388.521900 29.000000
75% 395.516080 30.000000
max 396.504140 30.000000

Output to Molecule Format or CSV with SMILES

In [15]:
oenb.write_dataframe_to_file(ml[ml.MW < 400], "mw_lt400.oeb")
In [16]:
%ls -lh mw_lt400.oeb
-rw-r--r--  1 mattg  staff   7.9K Jun  6 22:30 mw_lt400.oeb
In [17]:
oenb.write_dataframe_to_file(ml[ml.MW < 600], "mw_lt400.csv")
In [18]:
%%sh
head mw_lt400.csv
SMILES,TITLE,MW,NumAtoms
CC/C(=C(/c1ccc(cc1)O)\c2ccc(cc2)OCC[NH+](C)C)/c3ccccc3,ZINC01530090,388.5219,29
CC[NH+](CC)CCOc1ccc(cc1)/C(=C(/c2ccccc2)\Cl)/c3ccccc3,ZINC01530602,406.96756,29
CC/C(=C(/c1ccccc1)\c2ccc(cc2)OCC[NH+](C)C)/c3ccccc3,ZINC01530690,372.5225,28
C[NH+](C)CCOc1ccc(cc1)/C(=C(/CCCl)\c2ccccc2)/c3ccccc3,ZINC01531019,406.96756,29
c1cc(ccc1Cc2c3ccc(cc3ccc2c4ccc(cc4)O)O)OCC[NH+]5CCCCC5,ZINC01543842,454.57998,34
c1ccc2cc(ccc2c1)c3c(c4ccc(cc4s3)O)C(=O)c5ccc(cc5)OCC[NH+]6CCCCC6,ZINC01545572,508.6505,37
CC/C(=C(/c1ccc(cc1)OCC[NH+](C)C)\c2cccc(c2)O)/c3ccccc3,ZINC01585847,388.5219,29
CC1([C@H]([C@H](c2ccc(cc2O1)OC)c3ccc(cc3)OCC[NH+]4CCCC4)c5ccccc5)C,ZINC01730387,458.61174,36
Cc1c2cc(ccc2n(c1c3ccc(cc3)O)CCCCCC[NH+]4CCCC4)O,ZINC01914469,393.54172,29

Easy Depiction

OENotebook also has several helper depiction functions to generate depiction images, generate HTML image tags of depictions, or automatically depict any molecule in the notebook.

In [19]:
mol = oechem.OEMol()
oechem.OESmilesToMol(mol,"CC(=O)Oc1ccccc1C(=O)O")
oenb.draw_mol(mol)
In [20]:
from IPython.display import Image
Image(oenb.draw_mol_to_png(mol))
Out[20]:
In [21]:
tag = oenb.draw_mol_to_img_tag(mol)
print(tag[:80])
from IPython.display import HTML
HTML(tag)
<img src="
Out[21]:

Depiction of Molecules in DataFrame or in Grid

In [22]:
oenb.render_dataframe(ml.head(),width=200)
Molecule MW NumAtoms
0 388.52190 29
1 406.96756 29
2 372.52250 28
3 406.96756 29
4 454.57998 34
In [23]:
oenb.draw_mol_grid(ml, cols=4, rows=2)

Automatic depiction of Molecules

In [24]:
mol
Out[24]:

OEMol: CC(=O)Oc1ccccc1C(=O)O

In [25]:
oenb.enable_2D_mols()
In [26]:
mol
Out[26]:

Plotting

There are several good plotting libraries in the Python ecosystem. OENotebook has simple functions for generating scatter plots using Bokeh or matplotlib and mpld3 . In both of these plots, hover tooltips with 2D depictions of the molecules are generated.

In [27]:
%matplotlib inline
import warnings
In [28]:
fig, ax = oenb.scatter_mpl(ml, "MW", "NumAtoms")

We can also generate table popups of the data.

In [29]:
fig, ax = oenb.scatter_mpl(ml, "MW", "NumAtoms", show_2D=False)
In [30]:
# with warnings.catch_warnings():
#     warnings.filterwarnings("ignore",category=DeprecationWarning)
fig = oenb.scatter_bokeh(ml, "MW", "NumAtoms")
Loading BokehJS ...

<Bokeh Notebook handle for In[30] >

In [31]:
# with warnings.catch_warnings():
#     warnings.filterwarnings("ignore",category=DeprecationWarning)
fig = oenb.scatter_bokeh(ml, "MW", "NumAtoms", show_2D=False)
Loading BokehJS ...

<Bokeh Notebook handle for In[31] >


This post was written in a Jupyter Notebook. You can find the notebook here with instructions for downloading and running it yourself.